

Water's Role in Physiology & Health

Heating & cooling

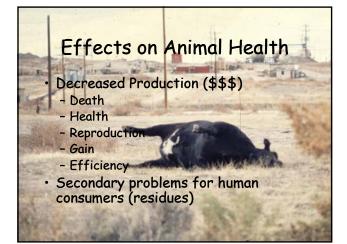
Heat transfer throughout body
Buffering temperature swings
Evaporative cooling

Highly polar, non-ionic molecule

Basis of physico-chemical environment that permits most biochemical reactions

Sources

Metabolism
Feedstuffs

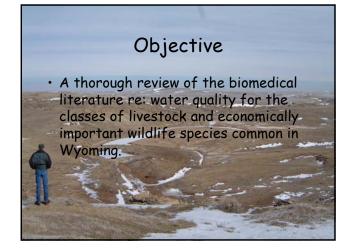


Water Quality

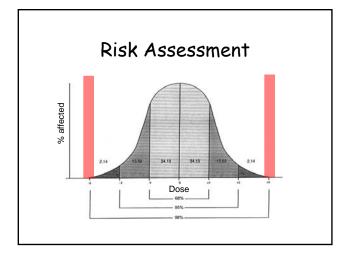
"The physical, chemical and biological characteristics of water in relationship to a set of standards."

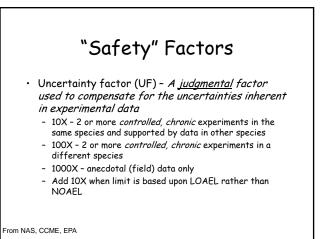
-Ideal quality = "pure" H₂O •All solutes subtract from "quality"

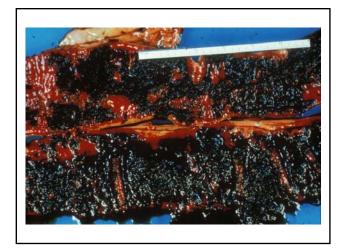

•*Measurement* is based upon a variety of *chemical* tests which do not directly correlate with physiology or animal health

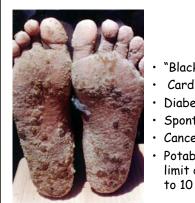


Factors that Affect Toxicity


Water consumption

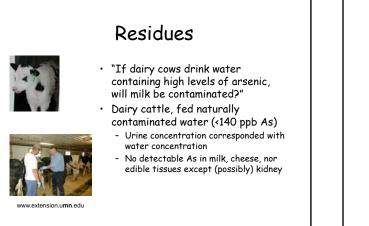

- Ambient temperature, diet, lactation, etc.
 Species
- Ancillary dietary factors
- Most waterborne toxicants are additive with the same element in dry feedstuffs
- Antagonists/synergists
- Age, sex
- Individual variation





Arsenic

- Sources
 - Industrial, agricultural, mining, drugs
 - Natural
- Two oxidation states (As^{III} and As^V)
 - Both occur naturally in water
 - As^III considered more toxic than $As^{\rm V}$

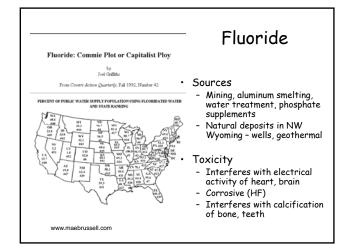


Wilson, 2001

Human

- "Blackfoot" disease
- Cardiovascular disease
- Diabetes mellitus
- Spontaneous abortion
- Cancer
- Potable water action limit dropped from 50 to 10 ppb - EPA, 2006

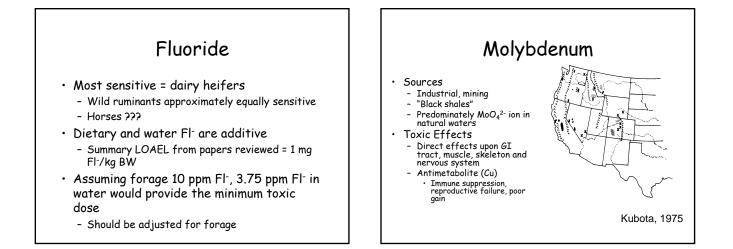
Arsenic


- Threshold toxic dose in domestic ruminants = 1-2 mg/kg BW
 agrees with NRC recommendation of 30-50 ppm *dietary* As as Max Tolerated dose
- EU recommendation = 2 ppm dietary As couldn't find any justification
- No good quantitative data in horses, but other, non-rodent species seemed to be quantitatively similar to cattle
- Limited data in wildlife suggest similar to cattle
- Assuming negligible forage concentrations and a NOAEL of 0.5 mg/kg, 1 ppm should protect under "worst" case conditions

Barium

- Sources
 - Predominately natural
 - Drilling muds
- Forms
 - Barite (BaSO₄) insoluble below pH 9.3
 - Witherite $(BaCO_3)$ intermediate sol.
 - BaCl₂ most soluble, most toxic

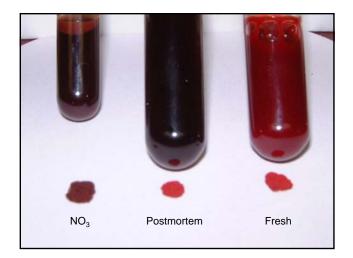
Barium


- Acute toxic effects due to passive K⁺ channel blockade in myocardium by Ba⁺⁺ ion
 - Nervous & cardiac malfunctions in lab animals, people
 Chronic effects seem to be related to repeated, subclinical, acute insults
- Limited data in ruminants suggests similar acute toxic mechanism(s)
- Dose data
 - Reagor et al (2005) 69 mg Ba/kg BW (BaCO3) NOAEL
 - Richards et al (2006) 2.2 mg/L in water lethal to cattle
 - Ram et al (1999) 4.6 mg/kg BW (BaCl₂) lethal in goats
- Interim recommendation 10 ppm

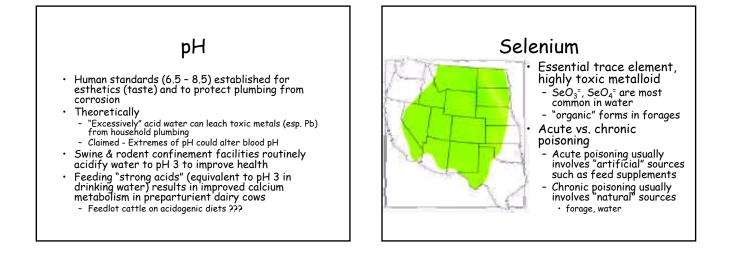
Clinical Effects

High dose

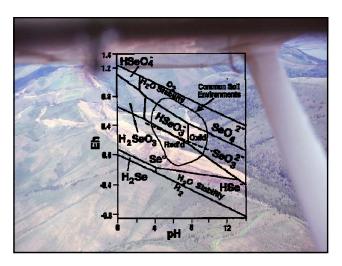
- Gastroenteritis
- Cardiac arrythmias
- Kidney damage
- Neurologic damage
- Reproductive failure
- Low (realistic, natural) dose
 - Tooth & bone deformities
 - Sensitive life stage = periods of rapid calcification
 - Sporadic exposure more toxic than equivalent dose given continuously



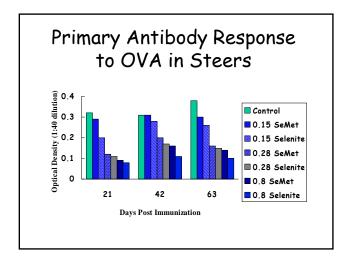
Molybdenum (summary)

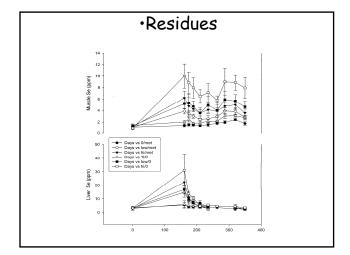

- Most sensitive species = cattle
- Forage & water sources are additive
- Anti-metabolite effects are dependent upon total dietary Cu:Mo ratio (<4 is toxic)

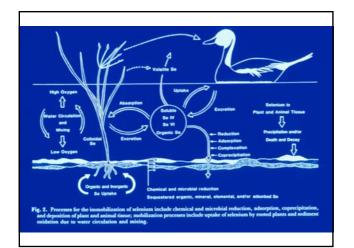
 - If high Mo soils or marginal Cu diets, any additional Mo from water is hazardous
 Assuming "normal" (7 ppm) Cu forages (or good supplementation) & < 1 ppm Mo from dry matter, water containing more than 375 ppb Mo would exceed toxic ratio.

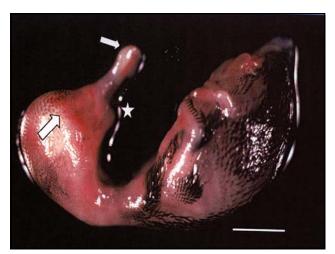

Nitrate & Nitrite Two chemical forms - NO2 & NO₃ - Natural - Agriculture 'Blue baby syndrome" Gastrointestinal conversion of $NO_3 \to NO_2$ - NO₂ oxidizes hemoglobin iron from $Fe^{2*} \rightarrow Fe^{3*}$ ks.water.usgs.gov

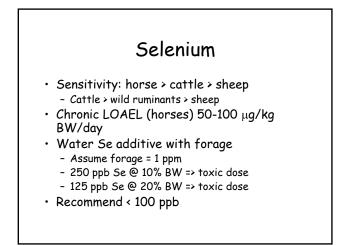
Clinical Effects Acute death • Abortion "subclinical effects" - Vitamin A - Thyroid function "Safe" concentration Feed + water < 200 mg/kg BW in well-managed, nutritionally adequate, animals Assuming neglible feed NO_3 , water < 500 ppm NO_3 ion

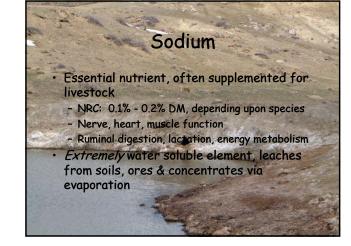


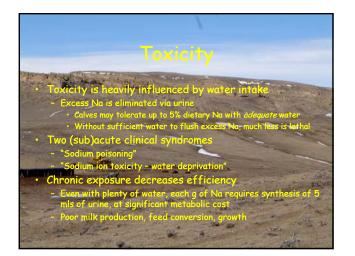

Chronic Selenosis



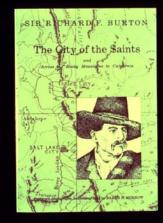


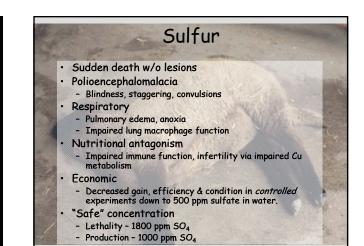


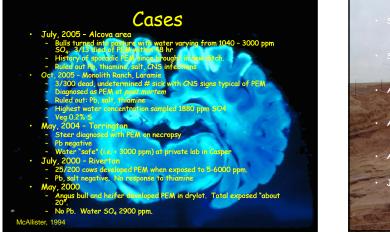




•10







"It lies to the west of the road, and is only one of a chain of alkaline waters and springs whose fetor, without exaggeration, taints the land. Cattle diriking of the fluid are nearly

sure to dispeven those that eat of the herbe salée, or salt grass growing upon its borders, and known by its reddish-yellow and sometimes bluish tinge, will suffer from a disease called the 'Alkali,' which not unfrequently kills them... On a near inspection, the loy surface [of the lake] turns out to be a dust of carbonate of enda...

Sir Richard Burton (1862).

- 15/180 bison developed signs of PEM
 No response to thinging (rules out thinging developed suithing the deficiency and Pb)
 Water SO₄ 2000 2400 ppm
 Aug, 1999 Sheridan
 Well failed and catTle forced to drink from S-treated reservoir, 4 dead within 48 hr
 PEM
 Aug, 1999 Laramie
 Rancher inaugurated new well (1800 ppm SO₄) in dry pasture. Killed "5-6" heifers (PEM) within 48 hrs
 Forage 0.2 0.3% S, Pb neg, Salt neg.
 Aug, 1999 Basin
 "several" of 200 head died of PEM after turned in
 Water samples 4000-6000 ppm SO₄
 July, 1998 Rawlins
 Rotational grazing scheme with separate water sources (1800 and 540 ppm).
 T died of PEM within 1 week of turning into higher SO₄ paddock More sick.
 Ruled out Pb, salt, thiamine

Total Dissolved Solids (TDS)

- *contained i* of cations a fined as all inorganic substances rough a 2 micron filter. i.e. sum that can pass as dissolved in
- p & easy test vaporate sample at 180° C in a pre-ish no longer changes. an be estimated fairly accurately fi Inde nt of the ty of a
- De estimated fairly accurately from the electrical d ple or approximated from measurement of individua ng them together *t very useful* s by si Just not very useful in predicting toxicity
 Toxicity actually depends upon specific ions pre
 Hg²r, Se⁴, As³* >> Na^{*}, SO₄²⁻ > Ca^{2*}, HCO₃^{*}
 Crude measure of water's suitability as solvent

- Plasma, seawater > 20,000 ppm
- Palatability (threshold: 500 5000 ppm)
- Poor reproduction, gain, milk production (threshold: 2,000 13,000 ppm, depending upon source cited)
 Susceptibility: Sheep < horses < cattle

