## WATER QUALITY RULES AND REGULATIONS

**Chapter 1** 

## DRAFT

WYOMING SURFACE WATER QUALITY STANDARDS

Proposed Rules 1st Draft (Public Notice Date) exceeded. In all Class 2B, 2C and 2D waters, the human health values for "Fish Only" (consumption of aquatic organisms) shall not be exceeded.

In certain waters, the criteria listed in Appendix B of these regulations may not be appropriate due to unique physical or chemical conditions. In such cases, human health values may be determined by use of the site-specific procedures outlined in the references listed in Appendix E of these regulations.

Section 19. **Industrial Water Supply**. All Wyoming surface waters which have the natural water quality potential for use as an industrial water supply shall be maintained at a quality which allows continued use of such waters for industrial purposes.

Degradation of such waters shall not be of such an extent to cause a measurable increase in raw water treatment costs to the industrial user(s).

Unless otherwise demonstrated, all Wyoming surface waters have the natural water quality potential for use as an industrial water supply.

Section 20. **Agricultural Water Supply**. All Wyoming surface waters which have the natural water quality potential for use as an agricultural water supply shall be maintained at a quality which allows continued use of such waters for agricultural purposes.

Degradation of such waters shall not be of such an extent to cause a measurable decrease in crop or livestock production.

Unless otherwise demonstrated, all Wyoming surface waters have the natural water quality potential for use as an agricultural water supply.

<u>The procedures used to implement this section are described in Appendix H,</u> <u>"Agricultural Use Protection."</u>

## Section 21. Protection of Aquatic Life.

(a) Ammonia.

(i) The toxicity of ammonia varies with pH and temperature and the applicable limitations are included in the charts in Appendix C of these regulations. The numeric ammonia criteria in Appendix C apply to all Class 1, 2A, 2B, 2AB and 2C waters.

(ii) In all Class 3 waters, concentrations of ammonia attributable to or influenced by human activities shall not be present in concentrations which could result in harmful acute or chronic effects to aquatic life, or which would not fully support existing and designated uses.

| 1        | <u>Appendix H</u>                                                                                      |
|----------|--------------------------------------------------------------------------------------------------------|
| 2 3      | Agricultural Use Protection                                                                            |
| 4<br>5   | (a) <u>Purpose. All surface waters in Wyoming are protected to some extent for</u>                     |
| 6        | agricultural uses. "Agricultural uses" are described in Section 3 as being either stock watering       |
| 7        | or irrigation.                                                                                         |
| 8        | The purpose of this Appendix is to provide the criteria and procedures to be used by the               |
| 9        | Water Quality Division when translating the narrative goals expressed in the Section 20 standard       |
| 10       | into appropriate WYPDES permit limits where maintaining agricultural use of the receiving              |
| 11       | waters is an issue.                                                                                    |
| 12       | "Maggurable Degrades". The first test in translating the standard is defining what is                  |
| 15<br>1/ | meant by "measurable decrease in crop or livestock production". The phrase implies that there          |
| 15       | is a pre-existing agricultural use of a stream or drainage prior to an application for a WYPDES        |
| 16       | discharge permit. For livestock watering purposes, a pre-existing use will always be assumed           |
| 17       | For irrigation purposes, there needs to be either a current irrigation structure or mechanism in       |
| 18       | place for diverting water from the stream channel, or a substantial acreage of naturally sub-          |
| 19       | irrigated pasture within a stream floodplain. Where neither of these conditions exist, there can       |
| 20       | be no irrigation use, nor loss in crop production attributable to water quality.                       |
| 21       |                                                                                                        |
| 22       | Where there are pre-existing agricultural uses, it may often be impossible to measure a                |
| 23       | loss in crops or livestock that can be attributed to water quality because of the many other factors   |
| 24       | that will affect actual production. It is also important to be able to predict the probability of a    |
| 25<br>26 | Therefore, the implementation of the nerrative criteria through WVPDES permits will always             |
| 20       | involve making reasonable judgments and assumptions                                                    |
| 28       | <u>involve making reasonable judgments and assumptions.</u>                                            |
| 29       | Effluent limits on in discharges permits that began issued prior to January 1, 1998 will not           |
| 30       | be affected by this Appendix in relation to the protection of agricultural uses. Such permits may      |
| 31       | be modified or renewed and still receive the same permit limits and conditions. Where                  |
| 32       | discharges have been occurring prior to that dateJanuary 1, 1998, it will be assumed that the          |
| 33       | discharge has had no adverse effect on permit limits have been protective of agricultural              |
| 34       | production. Therefore, it is not necessary to modify those discharges permit limits in order to        |
| 35       | achieve the goal of "no measurable decrease" in crop or livestock production. It would only be         |
| 36       | <u>necessary to maintain the existing quality of the discharge.</u> New discharges to these drainages  |
| 3/<br>28 | will receive the same effluent limitations and conditions as the pre January 1, 1998 permits. It is    |
| 30       | permit conditions may be made added to permits where the quality of the discharge(s) is shown          |
| 40       | to constitute a threat to any other designated uses described in <u>Chapter 1 of the Wyoming Water</u> |
| 41       | Ouality Rules and Regulations these regulations.                                                       |
| 42       |                                                                                                        |
| 43       |                                                                                                        |
| 44       |                                                                                                        |
| 45       |                                                                                                        |

I

| 1        |                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------|
| 2        |                                                                                                      |
| 3        | (b) Livestock Watering. The following limits apply to discharges that will be used                   |
| 4        | for livestock watering. Each limit must be achieved at the end-of-pipe prior to mixing with the      |
| 5        | receiving stream:                                                                                    |
| 6        | 5,000 mg/L TDS;                                                                                      |
| 7        | <u>3,000 mg/L Sulfate;</u>                                                                           |
| 8        | 2,000 mg/L Chloride                                                                                  |
| 9        |                                                                                                      |
| 10       | An exception to the limits above may be made whenever the background water quality of                |
| 11       | the receiving water is of poorer quality than that listed or when the livestock producer requests    |
| 12       | use of the water and thereby accepts any potential risk to his livestock. Waivers provided to        |
| 13       | livestock producers must be approved by all potentially affected livestock producers and             |
| 14       | landowners.                                                                                          |
| 15       | In addition to the basic offluent limitations above the Agricultural Use Protection Policy           |
| 10       | includes additional limits for livestock protection which may be incorporated into WVPDES            |
| 18       | nermits when there is reason to believe they may be associated with a discharge                      |
| 19       | permits when there is reason to beneve they may be associated with a discharge.                      |
| 20       | (c) Irrigation. Electrical conductivity (EC) and sodium adsorption ratio (SAR) limits                |
| 21       | will be derived in permits where effluent discharges may reach irrigated lands.                      |
|          |                                                                                                      |
| 22       | (i) For the purposes of this rule, irrigated lands include the following:                            |
| 23       |                                                                                                      |
| 24       | (A) <u>"Artificially Irrigated Lands" means the artificially irrigated lands</u>                     |
| 25       | where water is intentionally applied for agricultural purposes. Artificially irrigated lands will be |
| 26       | identified by the presence of canals, ditches, spreader dikes, spray irrigation systems or any other |
| 21       | constructed mechanism intended to divert water from a stream channel for application on              |
| 20<br>20 | <u>adjacent tands.</u>                                                                               |
| 30       | (B) "Naturally Irrigated Lands" means lands along stream channels                                    |
| 31       | that have enhanced vegetative production due to periodic natural flooding or sub-irrigation.         |
| 32       | Naturally irrigated lands are those lands where a stream channel is underlain by unconsolidated      |
| 33       | material and on which the combination of stream flow and channel geometry provides for               |
| 34       | enhanced productivity of plants used for agricultural purposes. Naturally irrigated lands may be     |
| 35       | identified by an evaluation of infra-red aerial imagery, surficial geologic maps, wetland            |
| 36       | mapping, landowner testimony, site-specific assessment, any combination of that information, or      |
| 37       | other types of evaluations.                                                                          |
| 38       |                                                                                                      |
| 39       | (1) <u>Appropriate effluent limits for EC and SAR will be calculated and applied</u>                 |
| 40<br>41 | to wypues discharge permits in all instances where the produced water discharge may reach            |
| 41<br>12 | any arunciany irrigated lands.                                                                       |
| 4∠<br>43 | (iii) EC and SAR limits will be applied to WVPDES permits where the                                  |
| 44       | produced water discharge may reach stream segments containing single parcels of naturally            |
| ••       | produced where discharge may reach stream segments containing single parcels of naturally            |

| 1        | irrigated land greater than 20 acres in size or multiple parcels in near proximity that total more                                                                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | than 20 acres. In making this estimation, small drainage bottoms may be excluded from                                                                                                 |
| 3        | consideration. Two specific criteria which may be used to exclude lands include lack of a persistent                                                                                  |
| 4        | active channel and unconsolidated floodplain deposits which are generally less than 50 feet in width.                                                                                 |
| 5        |                                                                                                                                                                                       |
| 6        | (iv) <u>If there are no pre-existing diversions or naturally irrigated lands within</u>                                                                                               |
| 7        | reach of a discharge, if the water will be impounded or managed so as not to reach a diversion or                                                                                     |
| 8        | naturally irrigated lands during the irrigation season, or if the discharge will not reach an                                                                                         |
| 9        | irrigated field, either because of natural conditions or water management techniques, then permit                                                                                     |
| 10       | limits will be established to protect other relevant water uses (e.g. livestock watering, wildlife,                                                                                   |
| 11       | <u>aquatic life, etc.).</u>                                                                                                                                                           |
| 12       |                                                                                                                                                                                       |
| 13       | (v) <u>Data and Information</u> . A minimum amount of data must be collected to                                                                                                       |
| 14       | identify existing irrigation uses and to appropriately set effluent limits on discharges that may                                                                                     |
| 15       | affect those uses. At a minimum, the following information must be obtained:                                                                                                          |
| 16       |                                                                                                                                                                                       |
| 17       | (A) <u>Location(s) of irrigation diversions and/or naturally irrigated</u>                                                                                                            |
| 18       | acreage;                                                                                                                                                                              |
| 19       | (B) <u>Crops grown under irrigation;</u>                                                                                                                                              |
| 20       | (C) <u>Published tolerance values for the most sensitive crop;</u>                                                                                                                    |
| 21       | (D) <u>Season of use.</u>                                                                                                                                                             |
| 22       |                                                                                                                                                                                       |
| 23       | Additional information may be required of the applicant to ensure that appropriate                                                                                                    |
| 24<br>25 | effluent limits are set to protect the receiving water.                                                                                                                               |
| 23<br>26 | (vi) Establishing Effluent Limits A 2 tiored desigion making process will be                                                                                                          |
| 20       | (vi) <u>Establishing Entuent Limits</u> A 3-tieled decision making process will be<br>used to establish appropriate affluent limits for EC and SAP whenever a proposed discharge will |
| 21<br>78 | likely reach irrigated lands                                                                                                                                                          |
| 20<br>20 | <u>Incory reach integrical failus.</u>                                                                                                                                                |
| 29<br>30 | (A) Tier 1- Default EC and SAR Limits Default limits for EC and                                                                                                                       |
| 31       | SAR may be used where the quality of the discharge water is relatively good or the irrigated                                                                                          |
| 32       | crops are salt-tolerant. The default values shall be based upon the published soil EC tolerance                                                                                       |
| 33       | values for the most sensitive crop and shall be calculated as follows:                                                                                                                |
| 34       | <u>undes for the most sensitive crop and shan de caledaded as fonows.</u>                                                                                                             |
| 35       | (I) Default EC limits will be based upon 100 percent yield                                                                                                                            |
| 36       | threshold values for soil EC as reported by the USDA Agriculture Research Service (ARS) Salt                                                                                          |
| 37       | Tolerance Database. In the event that the species of interest is not included in the ARS Salt                                                                                         |
| 38       | Tolerant Database, then the following alternative references can be consulted:                                                                                                        |
| 39       |                                                                                                                                                                                       |
| 40       | (1.) Hanson et al. <del>1999</del> 2006. Agricultural Salinity and                                                                                                                    |
| 41       | Drainage. DANR Pub. 3375, Univ. of Calif. Davis;                                                                                                                                      |
| 42       |                                                                                                                                                                                       |
| 43       | (2.) <u>Ayers and Westcot. 1985. Water Quality for</u>                                                                                                                                |
| 44       | Agriculture. UN FAO Irrigation and Drainage Pager 29 (revised); and                                                                                                                   |
| 45       |                                                                                                                                                                                       |
| 46       | (3.) <u>CPHA. 2002. Western Fertilizer Handbook. 9<sup>th</sup></u>                                                                                                                   |
|          |                                                                                                                                                                                       |

| 1      | Edition. Interstate Pub., Inc., Danville, IL.                                                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23     | (II) The relationship between soil FC values and irrigation                                                                                                                                   |
| 4      | water EC values will be: EC (soil) = $1.5 \text{ EC}$ (water), i.e., the published soil EC threshold                                                                                          |
| 5      | obtained from the appropriate reference will be divided by the soil concentration factor of 1.5 to                                                                                            |
| 6      | establish the discharge EC limit.                                                                                                                                                             |
| 7      |                                                                                                                                                                                               |
| 8      | However, in circumstances where the background water quality of the receiving water(s)                                                                                                        |
| 9      | is known to be significantly better than would otherwise be required based on a theoretical 100%                                                                                              |
| 0      | yield, effluent limits may be set to maintain that higher quality.                                                                                                                            |
| 1      |                                                                                                                                                                                               |
| 2      | (III) <u>Default limits will be set to ensure the relationship between</u>                                                                                                                    |
| 3      | SAR and EC remains within the designated zone of "no reduction in rate of infiltration" as                                                                                                    |
| 4      | depicted in Figure 1 at the end of this appendix. The following equation will be used to                                                                                                      |
| 5      | determine the default SAR limit: SAR = $(7.106.67 \times EC dS/m) - 2.483.33$ . If the actual EC                                                                                              |
| 6      | concentration of the discharge is observed to be of higher quality than the published default                                                                                                 |
| 7      | concentration then the SAR limit may be adjusted to actual EC concentrations depending on site                                                                                                |
| 8      | specific conditions. When the calculated default SAR value exceeds 10, the limit will be set at                                                                                               |
| 9      | 10 as the maximum default limit. The maximum default limit is only intended to apply to                                                                                                       |
| 0      | calculating Tier 1 limits and may be modified according to the provisions of Section (B) and                                                                                                  |
| 1      | Section (C) below.                                                                                                                                                                            |
| 2      |                                                                                                                                                                                               |
| 3      | (IV) <u>At a minimum, the EC and SAR limits will apply during</u>                                                                                                                             |
| 4      | the irrigation season and when flows are sufficient to support the use. For sub-irrigated lands                                                                                               |
| 5      | and passively irrigated lands such as those under spreader dike systems, EC and SAR limits will                                                                                               |
| 6      | generally apply year-round.                                                                                                                                                                   |
| /      | (D) Time 2 Declaranted Weter Orality. If sufficient data is socilable to                                                                                                                      |
| 8<br>0 | (B) <u>Her 2 - Background water Quality. If sufficient data is available to</u>                                                                                                               |
| 9<br>0 | demonstrate of calculate that the pre-existing background water quality at the point(s) of<br>diversion is werse then the offluent quality EC and SAR offluent limits may be based upon these |
| 0<br>1 | hackground conditions rather than tolerance values for the most sensitive gron. Where Tier 2 is                                                                                               |
| 1<br>2 | used to determine EC and SAR limits. EC will be based on background water quality as                                                                                                          |
| 3      | described below and SAR will be based on the equation: $SAR = (6.67 \text{ x FC } d\text{S/m}) - 3.33$                                                                                        |
| 1<br>1 | described below, and brat will be based on the equation. Brat (0.07 x De do/hij 5.55.                                                                                                         |
| 5      | (I) Measured Data Background water quality may be                                                                                                                                             |
| 6      | established based upon published pre-discharge historic data Generally this data only exists on                                                                                               |
| 7      | larger perennial mainstem stream channels where historic gauging has taken place. Actual                                                                                                      |
| ,<br>R | measured data is the most reliable means of establishing background and must be considered on                                                                                                 |
| )      | those waters where it is available.                                                                                                                                                           |
| )      |                                                                                                                                                                                               |
| l      | (II) Calculated Background. On intermittent and enhemeral                                                                                                                                     |
| 2      | stream channels, pre-discharge water quality data is usually scarce or non-existent and verv                                                                                                  |
| 3      | difficult to collect. In these circumstances, background water quality can be estimated by                                                                                                    |
| 4      | conducting soil surveys on land that has been historically irrigated from the subject stream. The                                                                                             |
| 5      | relationship between soil EC values and irrigation water EC values will be: EC (water) = EC                                                                                                   |
| 6      | (soil)/1.5.                                                                                                                                                                                   |

- 1 2 In the event that soil studies are used as a means to estimate baseline water quality for a 3 given drainage, the following requirements apply: 4 5 (1.) Sample Site Selection. Soil samples shall be taken 6 at semi-random sites within each contiguous irrigated segment downstream of the proposed 7 discharge. "Semi-random" in this case is intended to mean that the applicant will identify the 8 various major distinguishing terrain zones within each irrigated segment and select sample sites 9 randomly within each terrain zone. For example, the channel bottom may constitute one terrain 10 zone, the first small terrace above the channel bottom may be another terrain zone, and the 11 adjacent meadow or field may be a single remaining terrain zone, or that meadow / field may 12 actually be comprised of several other known zones such as discharge-affected soils vs. non-13 affected soils, sub-irrigated reaches vs. non-sub-irrigated reaches, etc. 14 15 (2.)Number of Sample Sites. Listed below are the
- 16 minimum number of soil sample sites required for each of the identified terrain zones (based on
  17 zone area) within a contiguous irrigated segment:
- 18

| Zone Area           | <u>Minimum Number of</u><br><u>Sample Sites</u> |
|---------------------|-------------------------------------------------|
| <u>0 – 5 acres</u>  | <u>3</u>                                        |
| <u>5 - 10 acres</u> | <u>5</u>                                        |
| <u>10 + acres</u>   | <u>7</u>                                        |

20 (3.) Sample Collection. Sample sites must be located a 21 minimum of 50 feet apart from one another. Each sample site shall be sampled at a minimum of four depths (0-12", 13-24", 25-36", 37-48"). If alfalfa is present within the terrain zone, each 22 23 sample site within that terrain zone must be sampled at a total of 6 depths (at the above-noted 24 depths, plus 49-60" and 61-72"). Each twelve inch sample increment must be analyzed either 25 individually or combined (composited) with other corresponding depth samples from the other sample sites within the same terrain zone (e.g., all 0-12" samples from a given terrain zone 26 27 bulked together and analyzed as a single composite sample). Sample results from each of the 28 depths will be averaged, in conjunction with a confidence interval calculation, and used to derive 29 the permit effluent limit for EC. 30 31 (4.) Sample Analysis. At a minimum, a saturated paste 32 extract for each sample shall be analyzed for EC. Though not necessary for the estimation of background water conductivity, it is advisable to also analyze the soil samples for pH, SAR, soil 33 34 texture and exchangeable sodium percentage (ESP) to avoid having to duplicate the sampling if 35 the results indicate that a "no harm analysis" (Section (C) below) needs to be completed. Percent organic matter shall be analyzed in the surface 0-12" samples only. In addition, analyses to 36 37 identify the clay mineralogy types present in the soils may also be warranted. 38 39 Soil Report Preparation. At a minimum the applicant shall (III)

| 1        | <u>submit:</u>                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        |                                                                                                                                                                           |
| 3        | (1.) <u>A map or diagram identifying where each of the soil</u>                                                                                                           |
| 4        | sample sites is located. At a minimum, the map or diagram must show the basic topography and                                                                              |
| 5        | stream course, impation structures (if present - such as spreader adms or head gales), estimated                                                                          |
| 0<br>7   | downstream irrigated areas) and section / township / range identification. This man must also                                                                             |
| 8        | show any delineated terrain zones, plus elevations of the terrain zones:                                                                                                  |
| 9        | show any defined terrain zones, pras crevations of the terrain zones,                                                                                                     |
| 10       | (2.) An accompanying location table which includes the                                                                                                                    |
| 11       | quarter / quarter, section, township, range, and latitude / longitude for each sample site;                                                                               |
| 12       |                                                                                                                                                                           |
| 13       | (3.) <u>Summary data table showing the analytical results</u>                                                                                                             |
| 14       | for each of the soil parameters listed above, for each depth, at each sample site;                                                                                        |
| 15       |                                                                                                                                                                           |
| 16       | (4.) <u>All associated lab sheets.</u>                                                                                                                                    |
| 17       |                                                                                                                                                                           |
| 18       | (C) <u>Ther 3 - No Harm Analysis. The actual effects of EC and SAR on</u>                                                                                                 |
| 19       | crop production are variable based upon soil type and chemistry and may be mitigated to some                                                                              |
| 20<br>21 | extent by managing inigation practices. EC and SAR entuent initis may also be established                                                                                 |
| 21       | natural water quality, expected cron yield, irrigation practices and/or other relevant factors                                                                            |
| 23       | related to crop production                                                                                                                                                |
| 24       |                                                                                                                                                                           |
| 25       | Because of the site-specific nature of this approach and the number and complexity of                                                                                     |
| 26       | variables that may need to be considered, there is a burden of proof placed upon the applicant to                                                                         |
| 27       | demonstrate through a comprehensive study that levels of EC and/or SAR, higher than either the                                                                            |
| 28       | default values or estimated background water quality, would most likely not measurably harm an                                                                            |
| 29       | existing irrigation use. Refined limits for EC and SAR resulting from a "no harm" analysis                                                                                |
| 30       | should incorporate a reasonable margin of safety to account for variables that cannot be precisely                                                                        |
| 31       | measured or modeled.                                                                                                                                                      |
| 32       | (vii) Imigation Weissen An expandion to EC on CAD limits established under                                                                                                |
| 33<br>21 | (VII) Inigation walver. An exception to EC of SAR limits established under<br>the Tier 1, 2 or 3 precedures may be made when affected landowners request use of the water |
| 35       | and thereby accept any potential risk to crop production on their lands. Irrigation waivers will                                                                          |
| 36       | only be granted in association with an irrigation management plan that provides reasonable                                                                                |
| 37       | assurance that the lower quality water will be confined to the targeted lands.                                                                                            |
| 38       |                                                                                                                                                                           |
| 39       | Reasonable Access Requirement. In circumstances where a landowner chooses to deny                                                                                         |
| 40       | access for the purpose of developing a Section 20 analysis, EC and SAR limits will be based                                                                               |
| 41       | upon the best information that can be reasonably obtained for developing permit limits. This                                                                              |
| 42       | circumstance may involve utilizing alternate sampling locations where conditions are expected                                                                             |
| 43       | to be similar in nature to the inaccessible area.                                                                                                                         |

Figure 1



(Ref. Hanson et.al. 2006)



Figure 1

Hanson Chart

EC of Irrigation Water (dS/m)

(Ref. Hanson et.al., 1999)